292 Views
195 Views
282 Views
241 Views
222 Views
310 Views
Let’s discuss the Euler's formula which is $$ { e }^{ ix }=\cos { x } +i\sin { x } $$ It can also be written as $$ { e }^{ i\theta }=\cos { \theta } +i\sin { \theta } $$ This \(i\) is defined as $$ { i }^{ 2 }=-1 $$ It is an imaginary and unique number and it is unique because $$ 1\times i=-1 $$ No such other identical number exists such that we multiply it and we get -1. We know this series $$ { e }^{ x }=1+\frac { x }{ 1! } +\frac { { x }^{ 2 } }{ 2! } +\frac { { x }^{ 3 } }{ 3! } +...+\frac { { x }^{ n } }{ n! } $$ which is expanded by Taylor's series. Now if I replace this \(x\) with \(ix\), we get $$ { e }^{ ix }=1+\frac { ix }{ 1! } +\frac { { ix }^{ 2 } }{ 2! } +\frac { { ix }^{ 3 } }{ 3! } +\frac { { ix }^{ 4 } }{ 4! } +... $$ $$ { e }^{ ix }=1+ix-\frac { { x }^{ 2 } }{ 2! } -\frac { { ix }^{ 3 } }{ 3! } +\frac { { x }^{ 4 } }{ 4! } +... $$ If we split it now $$ { e }^{ ix }=1-\frac { { x }^{ 2 } }{ 2! } +\frac { { x }^{ 4 } }{ 4! } +...+ix-i\left( \frac { { x }^{ 3 } }{ 3! } +... \right) $$ This gives us the expansion of \(\cos { x } \) and \(\sin { x } \). Thus $$ { e }^{ ix }=\cos { x } +i\sin { x } $$ Or $$ { e }^{ i\theta }=\cos { \theta } +i\sin { \theta } $$ This is called Euler's formula. Now if I consider a circle in cartesian coordinates, then $$ \frac { x }{ r } =\cos { \theta } $$ $$ \frac { y }{ r } =\sin { \theta } $$ $$ x=r\cos { \theta } $$ $$ y=r\sin { \theta } $$ Squaring them $$ { x }^{ 2 }+{ y }^{ 2 }={ r }^{ 2 }\cos ^{ 2 }{ \theta } +{ r }^{ 2 }\sin ^{ 2 }{ \theta } $$ Taking \(r^2\) common $$ { r }^{ 2 }\left( \cos ^{ 2 }{ \theta } +\sin ^{ 2 }{ \theta } \right) ={ x }^{ 2 }+{ y }^{ 2 } $$ $$ r=\sqrt { { x }^{ 2 }+{ y }^{ 2 } } $$ Or, it can also be done as $$ \frac { y }{ x } =\frac { r\sin { \theta } }{ r\cos { \theta } } =\tan { \theta } $$ $$ \theta =\tan ^{ -1 }{ \frac { y }{ x } } $$ Cartesian coordinates \((x,y)\) and polar coordinates \((r, \theta )\) are interconvertible.
330 Views
349 Views
346 Views
332 Views
366 Views
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..