5395 Views
5395 Views
Waves are of two types:
1. Progressive Wave
2. Standing Wave
But progressive wave is also a function of time. So the equations can be …
$${ \Psi }_{ 1 } = A \sin { 2\pi \left( \frac { x }{ \lambda } + \nu t \right) } \qquad ...(1) $$ For wave travelling in opposite direction $$ { \Psi }_{ 2 } = A \sin { 2\pi \left( \frac { x }{ \lambda } - \nu t \right) } \qquad ...(2) $$ On combining equation (1) and (2) $$ { \Psi } = { \Psi }_{ 1 } + { \Psi }_{ 2 }$$ $${ \Psi } = \left[ A \sin { 2\pi \left( \frac { x }{ \lambda } + \nu t \right) } \right] + \left[ A \sin { 2\pi \left( \frac { x }{ \lambda } - \nu t \right) } \right] $$ $$ { \Psi } = A\left[ \sin { 2\pi \left( \frac { x }{ \lambda } + \nu t \right) } + \sin { 2\pi \left( \frac { x }{ \lambda } - \nu t \right) } \right] $$ $$ { \Psi } = A\left[ \sin { \left( \frac { 2\pi x }{ \lambda } + 2\pi \nu t \right) } + \sin { \left( \frac { 2\pi x }{ \lambda } - 2\pi \nu t \right) } \right] $$ As we know from the trigonometry, $$ \sin { \left( A+B \right) } + \sin { \left( A-B \right) } = 2\sin { \left( \frac { A+B }{ 2 } \right) } \cos { \left( \frac { A-B }{ 2 } \right) } $$ Lets simplyfy accordingly, $${ \Psi } = A\left[ 2\sin { \left( \frac { \left( \frac { 2\pi x }{ \lambda } +2\pi \nu t \right) +\left( \frac { 2\pi x }{ \lambda } -2\pi \nu t \right) }{ 2 } \right) } { \left( \frac { \left( \frac { 2\pi x }{ \lambda } +2\pi \nu t \right) -\left( \frac { 2\pi x }{ \lambda } -2\pi \nu t \right) }{ 2 } \right) } \right] $$ $$ { \Psi } = A\left[ 2\sin { \left( \frac { \left( \frac { 2\pi x }{ \lambda } \right) +\left( \frac { 2\pi x }{ \lambda } \right) }{ 2 } \right) } \cos { \left( \frac { \left( 2\pi \nu t \right) +\left( 2\pi \nu t \right) }{ 2 } \right) } \right] $$ $$ { \Psi } = A\left[ 2\sin { \left( \frac { \left( \frac { 4\pi x }{ \lambda } \right) }{ 2 } \right) } \cos { \left( \frac { \left( 4\pi \nu t \right) }{ 2 } \right) } \right] $$ $$ { \Psi } = A\left[ 2\sin { \left( \frac { 2\pi x }{ \lambda } \right) } \cos { \left( 2\pi \nu t \right) } \right] $$ $$ \boxed { { \Psi } = 2A\sin { \left( \frac { 2\pi x }{ \lambda } \right) } \cos { \left( 2\pi \nu t \right) } } $$ This is the final equation for the standing wave.
Hence the standing wave can be defined as: All waves whose amplitude function can be factorised into factor independent of space coordinates and a factor independent of time are called “Stationary Wave”.
$$ { \Psi } = 2A\sin { \left( \frac { 2\pi x }{ \lambda } \right) } \cos { \left( 2\pi \nu t \right) } $$ Therefore when, \( x = 0\), $$ \frac { \lambda }{ 2 } , \frac { 2\lambda }{ 2 } , ... \frac { n\lambda }{ 2 } $$ $$ \sin { \left( \frac { 2\pi x }{ \lambda } \right) } = 0 $$ $$ \therefore { \Psi } = 0 $$ These points are known as nodes (minimum amplitude).
5666 Views
5693 Views
6490 Views
5814 Views
7071 Views
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..