By Sunil Bhardwaj

5529 Views


Size of the nucleus is of the order of \({ 10 }^{ -14 }\)m. If the electron is inside the nucleus, uncertainty in its position\( (\Delta x) \)should be \({ 10 }^{ -14 }\)m. $$ \therefore Uncertainty \ in \ momentum (\Delta p) = \frac { h }{ \Delta x } $$ $$ = \frac { 1.05 \times { 10 }^{ -34 }J.sec }{ { 10 }^{ -34 } } $$ $$ = 1.1 \times { 10 }^{ -20 }Kg/m.sec $$ The momentum p must be comparable to this $$ \therefore p \approx \Delta p = 1.1 \times { 10 }^{ -20 }Kg/m.sec $$ $$ \therefore Energy \ E = \sqrt { { m }^{ 2 }{ c }^{ 4 } + { p }^{ 2 }{ c }^{ 2 } } $$ $$ = \sqrt { { p }^{ 2 }{ c }^{ 2 } } $$ $$ = pc $$ $$ = 1.1 \times { 10 }^{ -20 }Kg/m.sec \times 3 \times { 10 }^{ 8 }m/sec $$ $$ = 3.3 \times { 10 }^{ -12 }J $$ Converting this into volts, $$ E = \frac { 3.3 \times { 10 }^{ -12 } }{ 1.6 \times { 10 }^{ -19 } } = 2.06 \times { 10 }^{ 7 }eV $$ This energy is very high and experiments shows that electron with such a high energy can make the molecule highly unstable. Therefore it is not possible for an electron to remain inside the nucleus.