7708 Views
5397 Views
5666 Views
5693 Views
6491 Views
6491 Views
According to Schrödinger, Atomic particles behave like waves. Then the equation of wave motion could be applied to them. Schrödinger combined two relations:
(a) The classical time-independent wave equation to describe the particle wave. $$\frac { { \partial }^{ 2 }\Psi }{ \partial { x }^{ 2 } } = -\frac { 4{ \pi }^{ 2 } }{ { \lambda }^{ 2 } } \Psi \qquad ...(1) $$
(b) The wave property of matter as represented by de Broglie equation. $$ \lambda=\frac { h }{ mv } \qquad ...(2)$$
Lets put the value of \(\lambda\) in equation (1) ,$$ \frac { { \partial }^{ 2 }\Psi }{ \partial { x }^{ 2 } } = -\frac { 4{ \pi }^{ 2 } }{ { \left( \frac { h }{ m\nu } \right) }^{ 2 } } \Psi $$ $$ \frac { { \partial }^{ 2 }\Psi }{ \partial { x }^{ 2 } } = -4{ \pi }^{ 2 }\frac { { \left( m\nu \right) }^{ 2 } }{ { h }^{ 2 } } \Psi $$ $$ \frac { { \partial }^{ 2 }\Psi }{ \partial { x }^{ 2 } } = -\left( \frac { 4{ \pi }^{ 2 }m }{ { h }^{ 2 } } \right) { m\nu }^{ 2 }\Psi \qquad ... (3) $$ But, Kinetic Energy = Total Energy - Potential Energy $$ \frac { 1 }{ 2 } { m\nu }^{ 2 } = \left( E - V \right) $$ $$ \therefore { m\nu }^{ 2 } = 2\left( E - V \right) $$ Lets substitute in equation (3) $$ \frac { { \partial }^{ 2 }\Psi }{ \partial { x }^{ 2 } } = -\left( \frac { 4{ \pi }^{ 2 }m }{ { h }^{ 2 } } \right) 2\left( E - V \right) \Psi $$ $$ \boxed { \frac { { \partial }^{ 2 }\Psi }{ \partial { x }^{ 2 } } = -\frac { 8{ \pi }^{ 2 }m\left( E - V \right) }{ { h }^{ 2 } } \Psi } \qquad ... (4) $$ This equation is applicable for the particle of mass \( m \) and moving along x axis in one direction. But for three dimensional motion, the Schrödinger equation will be partial differential equation with variables x, y and z. $$ \boxed { \frac { { \partial }^{ 2 }\Psi }{ \partial { x }^{ 2 } } +\frac { { \partial }^{ 2 }\Psi }{ \partial { y }^{ 2 } } +\frac { { \partial }^{ 2 }\Psi }{ \partial { z }^{ 2 } } = -\frac { 8{ \pi }^{ 2 }m\left( E - V \right) }{ { h }^{ 2 } } \Psi } $$ This equation is known as Schrödinger equation.
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..