3969 Views
3909 Views
4134 Views
3598 Views
4393 Views
3437 Views
A reaction is said to be of the first order if the rate of the reaction depends upon one concentration term only. E.g. $$ N_2O_2(g) \longrightarrow N_2O_4(g) + \frac12{ O }_{ 2 }(g) \text{ (First Order reaction) } $$
Half life period is defined as the time at which half of the reactant is converted into product. \( \therefore \) at half life period \(t = { t }_{ 1/2 }\), $$ \text{ conc. of reactant } = \frac { \text{ initial conc. of reactant } }{ 2 } $$ $$ or \ x = \frac { a }{ 2 } \qquad ...(1)$$ Equation for the rate constant for first order reaction is, $$ \boxed { k = \frac { 2.303 }{ t } \log { \frac { a }{ a-x } } } \qquad ...(2)$$ Substituting the value of x from eq (1), $$ k = \frac { 2.303 }{ { t }_{ 1/2 } } \log { \frac { a }{ a-\frac { a }{ 2 } } } $$ $$ k = \frac { 2.303 }{ { t }_{ 1/2 } } \log { \frac { a }{ \left( \frac { 2a-a }{ 2 } \right) } } $$ $$ k = \frac { 2.303 }{ { t }_{ 1/2 } } \log { \frac { a }{ \left( \frac { a }{ 2 } \right) } } $$ $$ k = \frac { 2.303 }{ { t }_{ 1/2 } } \log { \left( 2 \right) } $$ $$ k = \frac { 2.303 }{ { t }_{ 1/2 } } \times \left( 0.3010 \right) $$ $$ \boxed { { t }_{ 1/2 } = \frac { 0.693 }{ k } } $$ Thus the half life for a first order reaction is a constant and independent of the initial concentration.
Numerical: A substance decomposes according to first order rate law with a half time of 1 hr. What fraction of a given sample of the substance will remain after 2 hrs?
Solution: Given that,
\({ t }_{ 1/2 } = 1 hr\)
\(t = 2 hr\)
Fraction of sample remaining \(= \frac { C_{ t } }{ C_{ 0 } } = ?\)
For the half life equation, $$ \boxed { k = \frac { 0.693 }{ { t }_{ 1/2 } } } \\ k = \frac { 0.693 }{ 1 hr } = 0.693 { hr }^{ -1 }\qquad ...(1)$$ also, rate constant for first order reaction is, $$ \boxed { k =\frac { 2.303 }{ t } \log { \frac { C_{ 0 } }{ C_{ t } } } } $$ Lets substitute the values, $$ 0.693 = \frac { 2.303 }{ 2 hr } \log { \frac { C_{ 0 } }{ C_{ t } } } $$ $$ \therefore \log { \frac { C_{ 0 } }{ C_{ t } } } = \frac { 0.693 \times 2 }{ 2.303 } = 0.602$$ $$ \therefore \frac { C_{ 0 } }{ C_{ t } } = Anti.\log { \left( 0.602 \right) } = 3.998$$ $$ \therefore \frac { C_{ t } }{ C_{ 0 } } = \frac { 1 }{ 3.998 } = 0.25$$ i.e. fraction remaining after 2 hrs is 0.25
3933 Views
3972 Views
6556 Views
3562 Views
3148 Views
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..