5550 Views
4505 Views
7574 Views
4511 Views
3430 Views
10182 Views
Let us consider a closed system in which a pure liquid water and its vapors are in equilibrium with each other. $$ Water (liquid) \Longleftrightarrow Water (vapor) $$ For this system Clapeyron equation can be written as, $$ \boxed { \frac { dP }{ dT } = \frac { \Delta H }{ T\left( { V }_{ v } - { V }_{ l } \right) } } $$ or $$ \boxed { \frac { dP }{ dT } = \frac { \Delta { L }_{ v } }{ T\left( { V }_{ v } - { V }_{ l } \right) } } $$ Where \({ L }_{ v }\) is latent heat of vaporization. \({ V }_{ v }\) is Volume of one mole of water in vapor phase. \(V_{ l }\) is Volume of one mole of water in liquid phase.
If temerature is not near the critical temerature, \({ V }_{ v }>>{ V }_{ l }\) and hence \({ V }_{ v } - { V }_{ l } \simeq { V }_{ v } \) $$\therefore \frac { dP }{ dT } = \frac { \Delta { L }_{ v } }{ T{ V }_{ v } } \qquad ....(1)$$ Assuming that the vapor obeys ideal gas law, \(P{ V }_{ v } = nRT\) for one mole $$ P{ V }_{ v } = RT i.e. { V }_{ v } = \frac { RT }{ P } \qquad ....(2) $$ Lets substitute it in equation (1) $$ \frac { dP }{ dT } = \frac { \Delta { L }_{ v } }{ T } \frac { P }{ RT } $$ $$ \therefore \boxed { \frac { dP }{ P } = \frac { \Delta { L }_{ v } }{ R } \frac { dT }{ { T }^{ 2 } } } \qquad ....(3) $$ This equation is known as Clapeyron Clausius Equation .
The equation (3) can be integrated between the limits \({ P }_{ 1 }\) to \({ P }_{ 2 }\) and \(T_{ 1 }\) to \({ T }_{ 2 }\) assuming \(\Delta { L }_{ v }\) remains constant for small range of temerature. $$ \int _{ { P }_{ 1 } }^{ { P }_{ 2 } }{ \frac { dP }{ P } } = \frac { \Delta { L }_{ v } }{ R } \int _{ T_{ 1 } }^{ T_{ 2 } }{ \frac { dT }{ { T }^{ 2 } } } $$ i.e. $$ ln\frac { { P }_{ 2 } }{ { P }_{ 1 } } = \frac { -\Delta { L }_{ v } }{ R } \left( \frac { 1 }{ { T }_{ 2 } } -\frac { 1 }{ T_{ 1 } } \right) $$ i.e. $$ 2.303log\frac { { P }_{ 2 } }{ { P }_{ 1 } } = \frac { \Delta { L }_{ v } }{ R } \left( \frac { 1 }{ T_{ 1 } } -\frac { 1 }{ { T }_{ 2 } } \right) $$ $$ \boxed { log\frac { { P }_{ 2 } }{ { P }_{ 1 } } = \frac { \Delta { L }_{ v } }{ 2.303R } \left( \frac { { T }_{ 2 } - { T }_{ 1 } }{ T_{ 1 }{ T }_{ 2 } } \right) } $$ This equation is integrated form of Clapeyron Clausius Equation .
4343 Views
3632 Views
4598 Views
3842 Views
3828 Views
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..