By Sunil Bhardwaj

4466 Views

The product of ionic concentration of water at a given temp. is always constant. This constant is known as ionic product of water. It is written as $${ K }_{ W }$$ at 20°C for pure water. The value of $${ K }_{ W }$$ is $$1.0\times { 10 }^{ -14 }$$ $${ H }_{ 2 }O \longrightarrow { H }^{ + } + { OH }^{ - }$$ $${ K }_{ W } = { a }_{ { H }^{ + } } \times { a }_{ { OH }^{ - } }$$ also $${ a }_{ { H }^{ + } } = \frac { { K }_{ W } }{ { a }_{ { OH }^{ - } } } \qquad ...(1)$$The $${ K }_{ W }$$ can be determined with the help of cell. The cell must have one electrode $$Pt, { H }_{ 2 }(g) | { OH }^{ - }.$$ When this electrode is coupled to some suitable electrode for eg. Hydrogen gas electrode or any other suitable electrode, we get the cell. We can find out emf of the cell. This cell will be represented as follows: $$Pt, \underset { 1 atm }{ { H }_{ 2 }(g) } | \underset { a=unknown }{ { OH }^{ - } } || \underset { a=unknown }{ { H }^{ + } } | \underset { 1 atm }{ { H }_{ 2 }(g) } , Pt$$ at LHE $$\frac { 1 }{ 2 } { H }_{ 2 } \longrightarrow { H }^{ + }(base) + { e }^{ - }\qquad (Ox)$$ at RHE $${ H }^{ + }(acid) + { e }^{ - } \longrightarrow \frac { 1 }{ 2 } { H }_{ 2 }\qquad (Red)$$ Net cell reaction is $${ H }^{ + }(acid) \longrightarrow { H }^{ + }(base)$$ $$\therefore K = \frac { { a }_{ { H }^{ + } }(base) }{ { a }_{ { H }^{ + } }(acid) }$$ We can substitue the value of $${ a }_{ { H }^{ + } }$$(base) from equation (1) $$\therefore K = \frac { \left( \frac { { K }_{ W } }{ { a }_{ { OH }^{ - } } } \right) }{ { a }_{ { H }^{ + } }(acid) } = \frac { { K }_{ W } }{ { a }_{ { H }^{ + } } \times { a }_{ { OH }^{ - } } }$$ on applying the Nernst equation $${ E }_{ cell } = { E }_{ cell }^{ 0 } - \frac { 0.059 }{ 1 } \log { K }$$ $${ E }_{ cell } = { E }_{ cell }^{ 0 } - 0.059 \log { \left( \frac { { K }_{ W } }{ { a }_{ { H }^{ + } } \times { a }_{ { OH }^{ - } } } \right) }$$ $${ E }_{ cell } = 0 + 0.059 \log { \left( \frac { { a }_{ { H }^{ + } } \times { a }_{ { OH }^{ - } } }{ { K }_{ W } } \right) }$$ $$\frac { { E }_{ cell } }{ 0.059 } = \log { \left( \frac { { a }_{ { H }^{ + } } \times { a }_{ { OH }^{ - } } }{ { K }_{ W } } \right) }$$ $$\frac { { E }_{ cell } }{ 0.059 } = \log { { a }_{ { H }^{ + } } } + \log { { a }_{ { OH }^{ - } } } - \log { { K }_{ W } }$$ $$\therefore \log { { K }_{ W } } = \log { { a }_{ { H }^{ + } } } + \log { { a }_{ { OH }^{ - } } } - \frac { { E }_{ cell } }{ 0.059 }$$ By knowing $${ a }_{ { H }^{ + } }$$ and $${ a }_{ { OH }^{ - } }$$ and finding out the emf of the cell we can find out the $${ K }_{ W }$$. The value is $${ 10 }^{ -14 }$$.

#### Latest News

• Become an Instructor 4 March, 2018

Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..

#### More Chapters

• Spectroscopy
• Basic Quantum Chemistry
• Phase Rule
• Electrochemistry
• Colloidal State
• Chemical Thermodynamics
• Gaseous State
• Applied Electrochemistry
• Ionic Equilibria
• Nuclear Chemistry
• Solid State Chemistry
• Chemical Kinetics
• #### Other Subjects

• English
• Applied Physics
• Environmental Studies
• Physical Chemistry
• Analytical Chemistry
• Organic Chemistry
• Soft Skills
• Engineering Drawing
• General Medicine
• Mathematics
• Patente B Italia