9385 Views
5231 Views
4128 Views
12404 Views
5114 Views
4466 Views
The product of ionic concentration of water at a given temp. is always constant. This constant is known as ionic product of water. It is written as \({ K }_{ W }\) at 20°C for pure water. The value of \( { K }_{ W } \) is \(1.0\times { 10 }^{ -14 }\) $$ { H }_{ 2 }O \longrightarrow { H }^{ + } + { OH }^{ - } $$ $${ K }_{ W } = { a }_{ { H }^{ + } } \times { a }_{ { OH }^{ - } } $$ also $$ { a }_{ { H }^{ + } } = \frac { { K }_{ W } }{ { a }_{ { OH }^{ - } } } \qquad ...(1) $$The \({ K }_{ W }\) can be determined with the help of cell. The cell must have one electrode $$ Pt, { H }_{ 2 }(g) | { OH }^{ - }.$$ When this electrode is coupled to some suitable electrode for eg. Hydrogen gas electrode or any other suitable electrode, we get the cell. We can find out emf of the cell. This cell will be represented as follows: $$ Pt, \underset { 1 atm }{ { H }_{ 2 }(g) } | \underset { a=unknown }{ { OH }^{ - } } || \underset { a=unknown }{ { H }^{ + } } | \underset { 1 atm }{ { H }_{ 2 }(g) } , Pt $$ at LHE $$ \frac { 1 }{ 2 } { H }_{ 2 } \longrightarrow { H }^{ + }(base) + { e }^{ - }\qquad (Ox) $$ at RHE $$ { H }^{ + }(acid) + { e }^{ - } \longrightarrow \frac { 1 }{ 2 } { H }_{ 2 }\qquad (Red) $$ Net cell reaction is $$ { H }^{ + }(acid) \longrightarrow { H }^{ + }(base) $$ $$ \therefore K = \frac { { a }_{ { H }^{ + } }(base) }{ { a }_{ { H }^{ + } }(acid) } $$ We can substitue the value of \({ a }_{ { H }^{ + } }\)(base) from equation (1) $$ \therefore K = \frac { \left( \frac { { K }_{ W } }{ { a }_{ { OH }^{ - } } } \right) }{ { a }_{ { H }^{ + } }(acid) } = \frac { { K }_{ W } }{ { a }_{ { H }^{ + } } \times { a }_{ { OH }^{ - } } } $$ on applying the Nernst equation $$ { E }_{ cell } = { E }_{ cell }^{ 0 } - \frac { 0.059 }{ 1 } \log { K } $$ $$ { E }_{ cell } = { E }_{ cell }^{ 0 } - 0.059 \log { \left( \frac { { K }_{ W } }{ { a }_{ { H }^{ + } } \times { a }_{ { OH }^{ - } } } \right) } $$ $$ { E }_{ cell } = 0 + 0.059 \log { \left( \frac { { a }_{ { H }^{ + } } \times { a }_{ { OH }^{ - } } }{ { K }_{ W } } \right) } $$ $$ \frac { { E }_{ cell } }{ 0.059 } = \log { \left( \frac { { a }_{ { H }^{ + } } \times { a }_{ { OH }^{ - } } }{ { K }_{ W } } \right) } $$ $$ \frac { { E }_{ cell } }{ 0.059 } = \log { { a }_{ { H }^{ + } } } + \log { { a }_{ { OH }^{ - } } } - \log { { K }_{ W } } $$ $$ \therefore \log { { K }_{ W } } = \log { { a }_{ { H }^{ + } } } + \log { { a }_{ { OH }^{ - } } } - \frac { { E }_{ cell } }{ 0.059 } $$ By knowing \({ a }_{ { H }^{ + } }\) and \({ a }_{ { OH }^{ - } }\) and finding out the emf of the cell we can find out the \({ K }_{ W }\). The value is \({ 10 }^{ -14 }\).
5278 Views
4476 Views
5000 Views
3803 Views
3392 Views
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..