12289 Views
5095 Views
4450 Views
5262 Views
4451 Views
4946 Views
Such a cell consists of two hydrogen gas electrodes operating at different pressures dipping in to a common solution of hydrochloric acid e.g. $$ \underset { { P }_{ 1 } }{ Pt, { H }_{ 2 }\left( g \right) } | \underset { aq.soln }{ HCl } | \underset { { P }_{ 2 } }{ { H }_{ 2 }\left( g \right) , Pt } $$ This cell is reversible to cations \({ H }^{ + }\) ions. Let the activity of \({ H }^{ + }\) ions in solution be \({ a }_{ + }\). The cell reactions are as follows:
At L.H.E oxidation, $$ \frac { 1 }{ 2 } { H }_{ 2 }\left( { P }_{ 1 } \right) \Longleftrightarrow \underset { { a }_{ + } }{ H^{ + } } + { e }^{ - }$$ At R.H.E reduction, $$ \underset { { a }_{ + } }{ { H }^{ + } } + { e }^{ - } \Longleftrightarrow \frac { 1 }{ 2 } { H }_{ 2 }\left( { P }_{ 2 } \right) $$ therefore Net cell reaction $$ \overline { \frac { 1 }{ 2 } { H }_{ 2 }\left( { P }_{ 1 } \right) \Longleftrightarrow \frac { 1 }{ 2 } { H }_{ 2 }\left( { P }_{ 2 } \right) } $$ This reaction is independent of the concentration of the electrolyte. The Nernst equation for the above cell may be written as $$ { E }_{ cell } = { E }_{ cell }^{ 0 } - \frac { RT }{ nF } \ln { { \left( \frac { { P }_{ 2 } }{ P_{ 1 } } \right) }^{ \frac { 1 }{ 2 } } } $$ $$ { E }_{ cell } = { E }_{ cell }^{ 0 } - \frac { 2.303RT }{ F } \log { { \left( \frac { { P }_{ 2 } }{ P_{ 1 } } \right) }^{ \frac { 1 }{ 2 } } } $$ (Here, the number of electrons involved in the electrode reactions. n=1) Since, for concentration cells, \({ E }_{ cell }^{ 0 } = 0V\) $$ { E }_{ cell } = - \frac { 2.303RT }{ F } \log { { \left( \frac { { P }_{ 2 } }{ P_{ 1 } } \right) }^{ \frac { 1 }{ 2 } } } $$ $$ { E }_{ cell } = - \frac { 2.303RT }{ 2F } \log { { \left( \frac { { P }_{ 2 } }{ P_{ 1 } } \right) } } $$ At 298K, $$ \frac { 2.303RT }{ F } =0.0591$$ $$ \therefore { E }_{ cell } = - \frac { 0.0591 }{ 2 } \log { { \left( \frac { { P }_{ 2 } }{ P_{ 1 } } \right) } } $$ $$ i.e. \boxed { { E }_{ cell } = \frac { 0.0591 }{ 2 } \log { { \left( \frac { { P }_{ 1 } }{ P_{ 2 } } \right) } } } $$ For spontaneous cell reaction (i.e. to have positive cell e.m.f), \({ P }_{ 1 } > P_{ 2 }\).
Numerical problem: Calculate the e.m.f. of the following electrode concentration cell at 298K. $$ \underset { P_{ 1 } = 400torr }{ Pt, { H }_{ 2 } } | \underset { aq.soln }{ HCl } | \underset { { P }_{ 2 } = 200torr }{ { H }_{ 2 }, Pt } $$
Solution: The cell reactions are
At L.H.E oxidation, $$ \frac { 1 }{ 2 } { H }_{ 2 }\left( { P }_{ 1 } \right) \Longleftrightarrow \underset { { a }_{ + } }{ H^{ + } } + { e }^{ - } $$ At R.H.E reduction,$$ \underset { { a }_{ + } }{ { H }^{ + } } + { e }^{ - } \Longleftrightarrow \frac { 1 }{ 2 } { H }_{ 2 }\left( { P }_{ 2 } \right) $$ therefore Net cell reaction $$ \overline { \frac { 1 }{ 2 } { H }_{ 2 }\left( { P }_{ 1 } \right) \Longleftrightarrow \frac { 1 }{ 2 } { H }_{ 2 }\left( { P }_{ 2 } \right) } $$ $$ \boxed { { E }_{ cell } = \frac { 0.0591 }{ 2 } \log { { \left( \frac { { P }_{ 1 } }{ P_{ 2 } } \right) } } } $$ $$ { E }_{ cell } = \frac { 0.0591 }{ 2 } \log { { \left( \frac { 400 }{ 200 } \right) } } $$ $$ { E }_{ cell } = \frac { 0.0591 }{ 2 } \log { { \left( 2 \right) } } $$ $$ { E }_{ cell } = 0.02955 \times 0.301 = 8.895 \times { 10 }^{ -3 }V $$
3785 Views
3376 Views
3983 Views
3825 Views
9669 Views
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..