4643 Views
5441 Views
4641 Views
6003 Views
3965 Views
3534 Views
Consider a cell of the type $$ \ominus Ag | \underset { ({ a }_{ 1 }) }{ AgN{ O }_{ 3 } } \parallel \underset { ({ a }_{ 2 }) }{ AgN{ O }_{ 3 } } | Ag \oplus $$ which consists of two silver electrodes immersed in two solutions of \(AgN{ O }_{ 3 }\) of activities \({ a }_{ 1 }\) and \({ a }_{ 2 }\). Let \({ a }_{ 2 } > { a }_{ 1 }\). Since the two solutions are connected by a salt bridge, there is negligible transfer of electrolyte at the liquid junction. The use of salt bridge is represented by the double line put between the two half cells. This cell is reversible with cations, \({ Ag }^{ + }\) ions. The cell reactions are
At L.H.E oxidation, $$ \underset { { s } }{ { Ag } } \Longleftrightarrow \underset { { { a }_{ 1 } } }{ { Ag }^{ + } } + { e }^{ - } $$ At R.H.E reduction, $$\underset { { { a }_{ 2 } } }{ { Ag }^{ + } } + { e }^{ - } \Longleftrightarrow \underset { { s } }{ { Ag } } $$ therefore Net cell reaction$$ \overline { \underset { { { a }_{ 2 } } }{ { Ag }^{ + } } \Longleftrightarrow \underset { { { a }_{ 1 } } }{ { Ag }^{ + } } } $$ The Nernst equation for the above cell may be written as $$ { E }_{ cell } = { E }_{ cell }^{ 0 } - \frac { RT }{ nF } \ln { { \left( \frac { { a }_{ 1 } }{ a_{ 2 } } \right) } } $$ $$ { E }_{ cell } = { E }_{ cell }^{ 0 } - \frac { 2.303RT }{ F } \log { { \left( \frac { { a }_{ 1 } }{ a_{ 2 } } \right) } } $$ (Here, the number of electrons involved in the electrode reactions. n=1) Since, for concentration cells, \({ E }_{ cell }^{ 0 } = 0V\) $$ { E }_{ cell } = - \frac { 2.303RT }{ F } \log { { \left( \frac { { a }_{ 1 } }{ a_{ 2 } } \right) } } $$ At 298K, \(\frac { 2.303RT }{ F } =0.0591\) $$ \therefore { E }_{ cell } = - 0.0591 \log { { \left( \frac { { a }_{ 1 } }{ a_{ 2 } } \right) } } $$ $$ i.e. \boxed { { E }_{ cell } = 0.0591 \log { { \left( \frac { { a }_{ 2 } }{ a_{ 1 } } \right) } } } $$ Now the activity of single ion is given by \(a=m\gamma\) where m = molality of ion and \(\gamma\) = activity coefficient. $$ \therefore { a }_{ 1 } = { m }_{ 1 }{ \gamma }_{ 1 } \ and \ { a }_{ 2 } = { m }_{ 2 }{ \gamma }_{ 2 } $$ $$ i.e. \boxed { { E }_{ cell } = 0.0591 \log { { \left( \frac { { m }_{ 2 }{ \gamma }_{ 2 } }{ { m }_{ 1 }{ \gamma }_{ 1 } } \right) } } } $$ For spontaneous cell reaction, \({ a }_{ 2 } > { a }_{ 1 }.\)
Numerical Problem: Calculate the e.m.f. of the following cell at 298K $$ \ominus Ag | \underset { (0.01m) }{ AgN{ O }_{ 3 } } \parallel \underset { (0.1m) }{ AgN{ O }_{ 3 } } | Ag \oplus $$ Given that \(0.1m AgN{ O }_{ 3 }\) and \(0.01m AgN{ O }_{ 3 }\) solutions are 80% and 90% dissociated.
Solution: From the percentage dissociation of \(AgN{ O }_{ 3 }\) we can first calculate the dissociation per mole.
\(\therefore\) Conc. of \({ Ag }^{ + }\) ion in 0.01m \(AgN{ O }_{ 3 } =\frac { 0.01 \times 90 }{ 100 } = 0.009m \)
Similarly, Conc. of \({ Ag }^{ + }\) ion in 0.1m \(AgN{ O }_{ 3 } =\frac { 0.1 \times 80 }{ 100 } = 0.08m\)
For concentration cell without transference reversible to cations, we have $$ \boxed { { E }_{ cell } = 0.0591 \log { { \left( \frac { { a }_{ 2 } }{ a_{ 1 } } \right) } } } $$ $$ { E }_{ cell } = 0.0591 \log { { \left( \frac { 0.08 }{ 0.009 } \right) } } $$ $$ { E }_{ cell } = 0.0591 \log { { \left( 8.89 \right) } } $$ $$ { E }_{ cell } = 0.0591 \times 0.949 $$ $$ { E }_{ cell } = 0.056V $$
4186 Views
3993 Views
10298 Views
Shared publicly - 2019-08-23 00:00:00
Don’t want your columns to simply stack in some grid tiers? Use a combination of different classes for each tier as needed. See the example below for a better idea of how it all works.
Shared publicly - 2019-08-24 00:00:00
For grids that are the same from the smallest of devices to the largest, use the .col and .col-* classes. Specify a numbered class when you need a particularly sized column; otherwise, feel free to stick to
Shared publicly - 2023-02-28 11:09:52
this is
Shared publicly - 2023-02-28 10:48:10
gsgsg
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..