By Sunil Bhardwaj

6007 Views

The relation between emf of cell and heat of reaction $$\Delta H$$ can be calculated with the help of Helmholtz equation. $$\Delta G = \Delta H + T{ \left( \frac { d\left( \Delta G \right) }{ dT } \right) }_{ P }$$ Where $$\Delta G =$$ free energy change, $$\Delta H =$$ heat of reaction and T = temperature (K).

But $$\Delta G = -nFE\qquad ....(1)$$ $$\therefore -nFE = \Delta H + T{ \left( \frac { d\left( -nFE \right) }{ dT } \right) }_{ P }$$ $$-nFE = \Delta H - nFT{ \left( \frac { dE }{ dT } \right) }_{ P }$$ where $$\frac { dE }{ dT } = \frac { E_{ 2 } - E_{ 1 } }{ { T }_{ 2 } - { T }_{ 1 } }$$ is rate of change of emf of cell with respect to temperature. It is also known as Temperature Coefficient. $$\therefore -nFE = \Delta H - nFT{ \left( \frac { dE }{ dT } \right) }_{ P }$$ $$\therefore \Delta H = nFT{ \left( \frac { dE }{ dT } \right) }_{ P } - nFE$$ $$\therefore \Delta H = nF\left[ T{ \left( \frac { dE }{ dT } \right) }_{ P } - E \right] \qquad ....(2)$$ We know that $$\Delta G = \Delta H - T\Delta S$$

lets put the values of $$\Delta G$$ and $$\Delta H$$ from equation 1 and 2 $$-nFE = nF\left[ T{ \left( \frac { dE }{ dT } \right) }_{ P } - E \right] - T\Delta S$$ $$-nFE = nFT{ \left( \frac { dE }{ dT } \right) }_{ P } - nFE - T\Delta S$$ Or $$T\Delta S = nFT{ \left( \frac { dE }{ dT } \right) }_{ P }$$ $$\therefore \Delta S = nF{ \left( \frac { dE }{ dT } \right) }_{ P }\qquad ....(3)$$ With the help of equation 2 and 3 we can find out the $$\Delta H$$ and $$\Delta S$$ if we know $$\frac { dE }{ dT }$$ i.e. temperature coefficient.

#### Latest News

• Become an Instructor 4 March, 2018

Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..

#### More Chapters

• Spectroscopy
• Basic Quantum Chemistry
• Phase Rule
• Electrochemistry
• Colloidal State
• Chemical Thermodynamics
• Gaseous State
• Applied Electrochemistry
• Ionic Equilibria
• Nuclear Chemistry
• Solid State Chemistry
• Chemical Kinetics
• #### Other Subjects

• English
• Applied Physics
• Environmental Studies
• Physical Chemistry
• Analytical Chemistry
• Organic Chemistry
• Soft Skills
• Engineering Drawing
• General Medicine
• Mathematics
• Patente B Italia