5370 Views
4255 Views
12981 Views
5284 Views
4626 Views
5427 Views
From the maxwell distribution law, $$ \frac { { dn }_{ c } }{ n } =4\pi { \left( \frac { M }{ 2\pi RT } \right) }^{ \frac { 3 }{ 2 } }{ exp }^{ \left( \frac { -M{ c }^{ 2 } }{ 2RT } \right) }{ c }^{ 2 }dc $$ $$ \therefore \frac { { dn }_{ c } }{ n } =4\pi { \left( \frac { M }{ 2\pi RT } \right) }^{ \frac { 3 }{ 2 } }{ exp }^{ \left( \frac { -E }{ RT } \right) }{ c }^{ 2 }dc\qquad ......(1) $$ where \(\frac { 1 }{ 2 } M{ c }^{ 2 }=E\) or Kinetic Energy of gas molecules. $$ \therefore M{ c }^{ 2 }=2E\qquad ......(2) $$ Takein sq root of eq 2 $$ { M }^{ \frac { 1 }{ 2 } }c={ \left( 2E \right) }^{ \frac { 1 }{ 2 } }\qquad ......(3) $$ Also taking derivative of eq 2 $$ 2Mc dc = 2 dE $$ $$ Mc dc = dE\qquad ......(4) $$ Now multiplying eq 3 with 4 $$ { M }^{ \frac { 1 }{ 2 } }c \times Mc dc = { \left( 2E \right) }^{ \frac { 1 }{ 2 } } \times dE $$ $$ { M }^{ \frac { 3 }{ 2 } }{ c }^{ 2 } dc = { \left( 2E \right) }^{ \frac { 1 }{ 2 } } dE $$ $$ \therefore { c }^{ 2 } dc = \frac { { \left( 2E \right) }^{ \frac { 1 }{ 2 } } }{ { M }^{ \frac { 3 }{ 2 } } } dE \qquad ......(5) $$ Substituting ths value in eq 1, we get $$ \frac { { dn }_{ c } }{ n } =4\pi { \left( \frac { M }{ 2\pi RT } \right) }^{ \frac { 3 }{ 2 } }{ exp }^{ \left( \frac { -E }{ RT } \right) }\frac { { \left( 2E \right) }^{ \frac { 1 }{ 2 } } }{ { M }^{ \frac { 3 }{ 2 } } } dE $$ $$ \therefore \frac { 1 }{ n } \frac { { dn }_{ c } }{ dE } =4\pi \frac { { \left( M \right) }^{ \frac { 3 }{ 2 } } }{ { \left( 2\pi RT \right) }^{ \frac { 3 }{ 2 } } } { exp }^{ \left( \frac { -E }{ RT } \right) }\frac { { \left( 2E \right) }^{ \frac { 1 }{ 2 } } }{ { M }^{ \frac { 3 }{ 2 } } } $$ $$ \therefore \frac { 1 }{ n } \frac { { dn }_{ c } }{ dE } =\frac { { 4\pi } }{ 2\sqrt { 2 } { \left( \pi RT \right) }^{ \frac { 3 }{ 2 } } } { exp }^{ \left( \frac { -E }{ RT } \right) }{ \sqrt { 2 } \left( E \right) }^{ \frac { 1 }{ 2 } } $$ $$ \therefore \frac { 1 }{ n } \frac { { dn }_{ c } }{ dE } =\frac { { 2\pi } }{ { \left( \pi RT \right) }^{ \frac { 3 }{ 2 } } } { exp }^{ \left( \frac { -E }{ RT } \right) }{ \left( E \right) }^{ \frac { 1 }{ 2 } } $$ $$ \therefore p =\frac { { 2\pi } }{ { \left( \pi RT \right) }^{ \frac { 3 }{ 2 } } } { exp }^{ \left( \frac { -E }{ RT } \right) }{ \left( E \right) }^{ \frac { 1 }{ 2 } }\qquad ......(6) $$ Where \(p =\frac { 1 }{ n } \frac { { dn }_{ c } }{ dE } \) represents probability of molecules having energy E
4651 Views
6000 Views
3978 Views
3530 Views
4179 Views
Shared publicly - 2019-08-23 00:00:00
Don’t want your columns to simply stack in some grid tiers? Use a combination of different classes for each tier as needed. See the example below for a better idea of how it all works.
Shared publicly - 2019-08-24 00:00:00
For grids that are the same from the smallest of devices to the largest, use the .col and .col-* classes. Specify a numbered class when you need a particularly sized column; otherwise, feel free to stick to
Shared publicly - 2023-02-28 11:09:52
this is
Shared publicly - 2023-02-28 10:48:10
gsgsg
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..