4255 Views
12981 Views
5284 Views
4626 Views
5428 Views
4651 Views
Vander Waals equation for the real gas is, $$ \left( P+\frac { a }{ { V }^{ 2 } } \right) \left( V-b \right) =RT $$ On simplifying the equation, $$ PV+\frac { a }{ { V } } -Pb-\frac { ab }{ { V }^{ 2 } } =RT $$ Multilpy with \({ V }^{ 2 }\) we get, $$ P{ V }^{ 3 }+aV-Pb{ V }^{ 2 }-ab=RT{ V }^{ 2 } $$ Devide by P, $$ { V }^{ 3 }+\frac { aV }{ P } -b{ V }^{ 2 }-\frac { ab }{ P } =\frac { RT }{ P } { V }^{ 2 } $$ $$ { V }^{ 3 }-b{ V }^{ 2 }-\frac { RT }{ P } { V }^{ 2 }+\frac { aV }{ P } -\frac { ab }{ P } =0 $$ $$ { V }^{ 3 }-\left( b+\frac { RT }{ P } \right) { V }^{ 2 }+\frac { a }{ P } V-\frac { ab }{ P } =0\qquad ....(1) $$ At critical temperature, pressure and volume. $$ T={ T }_{ c }, P={ P }_{ c }, \ and \ V=V_{ c }, $$ Substituting the values of T and P in equation (1) $$ { V }^{ 3 }-\left( b+\frac { R{ T }_{ c } }{ { P }_{ c } } \right) { V }^{ 2 }+\frac { a }{ { P }_{ c } } V-\frac { ab }{ { P }_{ c } } =0 \qquad ....(2) $$ Also \(V=V_{ c }\) $$ \therefore V-V_{ c }=0 \ and \ { \left( V-V_{ c } \right) }^{ 3 }=0 $$ Simplifying this equation $$ { V }^{ 3 }-3V_{ c }{ V }^{ 2 }+3{ VV_{ c } }^{ 2 }-{ V_{ c } }^{ 3 }=0\qquad ....(3) $$ Hench the coefficients of simirlar power of V must be equal in both the equation (2) and (3) $$ 3{ V }_{ c }=\left( b+\frac { R{ T }_{ c } }{ { P }_{ c } } \right) \qquad ....(4) $$ $$ 3{ V_{ c } }^{ 2 }=\frac { a }{ { P }_{ c } } \qquad ....(5) $$ $$ { V_{ c } }^{ 3 }=\frac { ab }{ { P }_{ c } } \qquad ....(6) $$ Deviding equation (6) with eq (5) $$ \frac { { V_{ c } }^{ 3 } }{ 3{ V_{ c } }^{ 2 } } =\frac { ab }{ { P }_{ c } } \times \frac { { P }_{ c } }{ a } $$ $$ \therefore { V_{ c } }=3b\qquad ....(7) $$ Substituting the value of \({ V_{ c } }\) in equation (5) $$ 3\times { \left( 3b \right) }^{ 2 }=\frac { a }{ { P }_{ c } } $$ $$ \therefore { P }_{ c } = \frac { a }{ 27{ b }^{ 2 } } \qquad ....(8) $$ Putting values of \({ P }_{ c }\) and \({ V_{ c } }\) in equation (4) $$ 3\times 3b=\left( b+\frac { R{ T }_{ c } }{ \frac { a }{ 27{ b }^{ 2 } } } \right) $$ $$ 9b=b+R{ T }_{ c }\frac { 27{ b }^{ 2 } }{ a } $$ $$ \therefore R{ T }_{ c }\frac { 27{ b }^{ 2 } }{ a } =8b $$ $$ \therefore { T }_{ c }=\frac { 8 }{ 27 } \frac { a }{ R{ b }^{ 2 } } \qquad ....(9) $$ $$ \therefore { V_{ c } }=3b\qquad { P }_{ c } = \frac { a }{ 27{ b }^{ 2 } } \ and \ { T }_{ c }=\frac { 8 }{ 27 } \frac { a }{ b } $$
6001 Views
3979 Views
3530 Views
4179 Views
3987 Views
Shared publicly - 2019-08-23 00:00:00
Don’t want your columns to simply stack in some grid tiers? Use a combination of different classes for each tier as needed. See the example below for a better idea of how it all works.
Shared publicly - 2019-08-24 00:00:00
For grids that are the same from the smallest of devices to the largest, use the .col and .col-* classes. Specify a numbered class when you need a particularly sized column; otherwise, feel free to stick to
Shared publicly - 2023-02-28 11:09:52
this is
Shared publicly - 2023-02-28 10:48:10
gsgsg
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..