5829 Views
7082 Views
5025 Views
6409 Views
5401 Views
9380 Views
The vibrational energy of a harmonic oscillator is given by Schrodinger's relation. $$ { E }_{ v } = \left( v + \frac { 1 }{ 2 } \right) h\omega \qquad \qquad \qquad ...(1)$$ where \(v\) = vibrational quantum number having values 0, 1, 2, ..... etc.
\(h\) = Planck's constant
\( \omega\) = fundamental frequency of vibration $$ \omega = \frac { 1 }{ 2\pi } \sqrt { \frac { K }{ \mu } } $$ Lets put this value in equation (1), we get, $$ { E }_{ v } = \left( v + \frac { 1 }{ 2 } \right) \frac { h }{ 2\pi } \sqrt { \frac { K }{ \mu } } $$ For lowest energy level, \(v = 0\) $$ { E }_{ v } = \left( 0 + \frac { 1 }{ 2 } \right) \frac { h }{ 2\pi } \sqrt { \frac { K }{ \mu } } $$ $$ { E }_{ v } = \frac { 1 }{ 2 } \frac { h }{ 2\pi } \sqrt { \frac { K }{ \mu } } $$ This energy possessed by molecule when \(v = 0\) is called Zero Point Energy. The zero point energy indicates that the atoms can never be at rest, the molecules must vibrate even at \(0\) K. i.e., at absolute zero, where translational and rotational energies are to be zero.
The vibrational frequency of HCl is \(2.988 \times { 10 }^{ 5 } { m }^{ -1 }\). Calculate the zero point energy of the molecule.
Solution: We have wave number \(\overline { \upsilon } = 2.988 \times { 10 }^{ 5 } { m }^{ -1 }\)
Zero Point Energy is the vibrational energy at \(v = 0\) $$ \therefore { E }_{ 0 } = \frac { 1 }{ 2 } h\omega = \frac { 1 }{ 2 } h\upsilon = \frac { 1 }{ 2 } h\overline { \upsilon } c $$ $$ = \frac { 1 }{ 2 } \left( 6.626 \times { 10 }^{ -34 } Js \right) \left( 2.988 \times { 10 }^{ 5 } { m }^{ -1 } \right) \left( 3 \times { 10 }^{ 8 } m/s \right) $$ $$ \qquad = \frac { 1 }{ 2 } \left( 5.94 \times { 10 }^{ -20 } \right) $$ $$ \qquad = 2.97 \times { 10 }^{ -20 } J $$
5227 Views
4126 Views
12394 Views
5110 Views
4464 Views
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..