6557 Views
5569 Views
10037 Views
5387 Views
4269 Views
13010 Views
The vibrational energy of a harmonic oscillator is given by Schrodingers relation. i.e. $$ \boxed { { E }_{ v } = \left( v + \frac { 1 }{ 2 } \right) \frac { h }{ 2\pi } \sqrt { \frac { K }{ \mu } } } \qquad ...(1) $$ For lowest energy level, \(v = 0\) $${ E }_{ v } = \frac { 1 }{ 2 } \frac { h }{ 2\pi } \sqrt { \frac { K }{ \mu } } $$ The vibrational energy associated with a molecule under going anharmonic oscillations is given by, $$ \boxed { { E }_{ v } = \left( v + \frac { 1 }{ 2 } \right) h\omega - A } \qquad ...(2) $$ The term A is related to vibrational quantum number and frequency by relation $$ A = { \left( v + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x \qquad ...(3)$$ where x is called the anharmonicity constant.
Therefore eq (2) becomes, $$ \boxed { { E }_{ v } = \left( v + \frac { 1 }{ 2 } \right) h\omega - { \left( v + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x } \qquad ...(4)$$
The energy of vibrational level \(v = 0\) can be calculated using equation (4) as,$$ { E }_{ 0 } = \left( 0 + \frac { 1 }{ 2 } \right) h\omega - { \left( 0 + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ { E }_{ 0 } = \left( \frac { 1 }{ 2 } \right) h\omega - { \left( \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ \boxed { { E }_{ 0 } = \frac { 1 }{ 2 } h\omega - \frac { 1 }{ 4 } h\omega x } \qquad ...(5) $$ The energy of vibrational level \(v = 1\) can be calculated using equation (4) as, $$ { E }_{ 1 } = \left( 1 + \frac { 1 }{ 2 } \right) h\omega - { \left( 1 + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ { E }_{ 1 } = \left( \frac { 3 }{ 2 } \right) h\omega - { \left( \frac { 3 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ \boxed { { E }_{ 1 } = \frac { 3 }{ 2 } h\omega - \frac { 9 }{ 4 } h\omega x } \qquad ...(6) $$ For transition \(v = 0\) to \(v = 1\), the frequency of spectral line is given by, $$ \Delta { E }_{ v } = { E }_{ 1 } - { E }_{ 0 } $$ $$ \Delta { E }_{ v } = \left[ \frac { 3 }{ 2 } h\omega - \frac { 9 }{ 4 } h\omega x \right] - \left[ \frac { 1 }{ 2 } h\omega - \frac { 1 }{ 4 } h\omega x \right] $$ $$ \Delta { E }_{ v } = \frac { 3 }{ 2 } h\omega - \frac { 9 }{ 4 } h\omega x - \frac { 1 }{ 2 } h\omega + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 3 }{ 2 } h\omega - \frac { 1 }{ 2 } h\omega - \frac { 9 }{ 4 } h\omega x + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 2 }{ 2 } h\omega - \frac { 8 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = h\omega - 2h\omega x $$ $$ \boxed { \Delta { E }_{ v } = h\omega \left( 1 - 2x \right) } \qquad ...(7) $$ Since energy difference is quantised. $$ \Delta { E }_{ v } = hv = hc\overline { v } $$ $$ \therefore hc\overline { v } = h\omega \left( 1 - 2x \right) $$ $$ \therefore \overline { v } = \frac { \omega }{ c } \left( 1 - 2x \right) $$ $$ \therefore \boxed { \overline { v } = \overline { \omega } \left( 1 - 2x \right) } \qquad ...(8) $$ The frequencies of spectral band produced due to transition from \(v = 0\) to \(v = 1\) is called fundamental band or first harmonic band.
Similarly, The energy of vibrational level \(v = 2\) can be calculated using equation (4) as, $$ { E }_{ 2 } = \left( 2 + \frac { 1 }{ 2 } \right) h\omega - { \left( 2 + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ { E }_{ 2 } = \left( \frac { 5 }{ 2 } \right) h\omega - { \left( \frac { 5 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ \boxed { { E }_{ 2 } = \frac { 5 }{ 2 } h\omega - \frac { 25 }{ 4 } h\omega x } \qquad ...(9) $$ For transition \(v = 0\) to \(v = 2\), the frequency of spectral line is given by, $$ \Delta { E }_{ v } = { E }_{ 2 } - { E }_{ 0 }$$ $$ \Delta { E }_{ v } = \left[ \frac { 5 }{ 2 } h\omega - \frac { 25 }{ 4 } h\omega x \right] - \left[ \frac { 1 }{ 2 } h\omega - \frac { 1 }{ 4 } h\omega x \right] $$ $$ \Delta { E }_{ v } = \frac { 5 }{ 2 } h\omega - \frac { 25 }{ 4 } h\omega x - \frac { 1 }{ 2 } h\omega + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 5 }{ 2 } h\omega - \frac { 1 }{ 2 } h\omega - \frac { 25 }{ 4 } h\omega x + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 4 }{ 2 } h\omega - \frac { 24 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = 2h\omega - 6h\omega x $$ $$ \boxed { \Delta { E }_{ v } = 2h\omega \left( 1 - 3x \right) } \qquad ...(10) $$ Since energy difference is quantised. $$ \Delta { E }_{ v } = hv = hc\overline { v } $$ $$ \therefore hc\overline { v } = 2h\omega \left( 1 - 3x \right) $$ $$ \therefore \overline { v } = 2\frac { \omega }{ c } \left( 1 - 3x \right) $$ $$ \therefore \boxed { \overline { v } = 2\overline { \omega } \left( 1 - 3x \right) } \qquad ...(11) $$ The frequencies of spectral band produced due to transition from \(v = 0\) to \(v = 2\) is called first overtone or second harmonic band.
Also, The energy of vibrational level \(v = 3\) can be calculated using equation (4) as, $$ { E }_{ 3 } = \left( 3 + \frac { 1 }{ 2 } \right) h\omega - { \left( 3 + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ { E }_{ 3 } = \left( \frac { 7 }{ 2 } \right) h\omega - { \left( \frac { 7 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ \boxed { { E }_{ 3 } = \frac { 7 }{ 2 } h\omega - \frac { 49 }{ 4 } h\omega x } \qquad ...(12) $$ For transition \(v = 0\) to \(v = 3\), the frequency of spectral line is given by, $$ \Delta { E }_{ v } = { E }_{ 3 } - { E }_{ 0 }$$ $$ \Delta { E }_{ v } = \left[ \frac { 7 }{ 2 } h\omega - \frac { 49 }{ 4 } h\omega x \right] - \left[ \frac { 1 }{ 2 } h\omega - \frac { 1 }{ 4 } h\omega x \right] $$ $$ \Delta { E }_{ v } = \frac { 7 }{ 2 } h\omega - \frac { 49 }{ 4 } h\omega x - \frac { 1 }{ 2 } h\omega + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 7 }{ 2 } h\omega - \frac { 1 }{ 2 } h\omega - \frac { 49 }{ 4 } h\omega x + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 6 }{ 2 } h\omega - \frac { 48 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = 3h\omega - 12h\omega x $$ $$ \boxed { \Delta { E }_{ v } = 3h\omega \left( 1 - 4x \right) } \qquad ...(13) $$ Since energy difference is quantised. $$ \Delta { E }_{ v } = hv = hc\overline { v } $$ $$ \therefore hc\overline { v } = 3h\omega \left( 1 - 4x \right) $$ $$ \therefore \overline { v } = 3\frac { \omega }{ c } \left( 1 - 4x \right) $$ $$ \therefore \boxed { \overline { v } = 3\overline { \omega } \left( 1 - 4x \right) } \qquad \qquad \qquad ...(14)$$ The frequencies of spectral band produced due to transition from \(v = 0\) to \(v = 3\) is called second overtone or third harmonic band.
So if we take the ratio of frequencies we get, $$ { \overline { \omega } }\left( 1 - 2x \right) : 2{ \overline { \omega } }\left( 1 - 3x \right) : 3{ \overline { \omega } }\left( 1 - 4x \right) $$ As anharmonicity constant \(x\) is very small we can say, $$ \left( 1 - 2x \right) \approx \left( 1 - 2x \right) \approx \left( 1 - 2x \right) \approx 1 $$ Therefore, equation becomes, $$ { \overline { \omega } }: 2{ \overline { \omega } }: 3{ \overline { \omega } } = 1: 2: 3 $$ Thus, the frequencies of the origin of fundamental, first and second overtone bands are approximately in the ratio of 1: 2: 3 and in terms of wavelengths they are \(1: \frac { 1 }{ 2 } : \frac { 1 }{ 3 }\) .
5299 Views
4641 Views
5442 Views
4665 Views
6018 Views
Shared publicly - 2019-08-23 00:00:00
Don’t want your columns to simply stack in some grid tiers? Use a combination of different classes for each tier as needed. See the example below for a better idea of how it all works.
Shared publicly - 2019-08-24 00:00:00
For grids that are the same from the smallest of devices to the largest, use the .col and .col-* classes. Specify a numbered class when you need a particularly sized column; otherwise, feel free to stick to
Shared publicly - 2023-02-28 11:09:52
this is
Shared publicly - 2023-02-28 10:48:10
gsgsg
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..