5563 Views
4519 Views
7584 Views
4524 Views
3442 Views
10198 Views
The vibrational energy of a harmonic oscillator is given by Schrodingers relation. i.e. $$ \boxed { { E }_{ v } = \left( v + \frac { 1 }{ 2 } \right) \frac { h }{ 2\pi } \sqrt { \frac { K }{ \mu } } } \qquad ...(1) $$ For lowest energy level, \(v = 0\) $${ E }_{ v } = \frac { 1 }{ 2 } \frac { h }{ 2\pi } \sqrt { \frac { K }{ \mu } } $$ The vibrational energy associated with a molecule under going anharmonic oscillations is given by, $$ \boxed { { E }_{ v } = \left( v + \frac { 1 }{ 2 } \right) h\omega - A } \qquad ...(2) $$ The term A is related to vibrational quantum number and frequency by relation $$ A = { \left( v + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x \qquad ...(3)$$ where x is called the anharmonicity constant.
Therefore eq (2) becomes, $$ \boxed { { E }_{ v } = \left( v + \frac { 1 }{ 2 } \right) h\omega - { \left( v + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x } \qquad ...(4)$$
The energy of vibrational level \(v = 0\) can be calculated using equation (4) as,$$ { E }_{ 0 } = \left( 0 + \frac { 1 }{ 2 } \right) h\omega - { \left( 0 + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ { E }_{ 0 } = \left( \frac { 1 }{ 2 } \right) h\omega - { \left( \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ \boxed { { E }_{ 0 } = \frac { 1 }{ 2 } h\omega - \frac { 1 }{ 4 } h\omega x } \qquad ...(5) $$ The energy of vibrational level \(v = 1\) can be calculated using equation (4) as, $$ { E }_{ 1 } = \left( 1 + \frac { 1 }{ 2 } \right) h\omega - { \left( 1 + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ { E }_{ 1 } = \left( \frac { 3 }{ 2 } \right) h\omega - { \left( \frac { 3 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ \boxed { { E }_{ 1 } = \frac { 3 }{ 2 } h\omega - \frac { 9 }{ 4 } h\omega x } \qquad ...(6) $$ For transition \(v = 0\) to \(v = 1\), the frequency of spectral line is given by, $$ \Delta { E }_{ v } = { E }_{ 1 } - { E }_{ 0 } $$ $$ \Delta { E }_{ v } = \left[ \frac { 3 }{ 2 } h\omega - \frac { 9 }{ 4 } h\omega x \right] - \left[ \frac { 1 }{ 2 } h\omega - \frac { 1 }{ 4 } h\omega x \right] $$ $$ \Delta { E }_{ v } = \frac { 3 }{ 2 } h\omega - \frac { 9 }{ 4 } h\omega x - \frac { 1 }{ 2 } h\omega + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 3 }{ 2 } h\omega - \frac { 1 }{ 2 } h\omega - \frac { 9 }{ 4 } h\omega x + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 2 }{ 2 } h\omega - \frac { 8 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = h\omega - 2h\omega x $$ $$ \boxed { \Delta { E }_{ v } = h\omega \left( 1 - 2x \right) } \qquad ...(7) $$ Since energy difference is quantised. $$ \Delta { E }_{ v } = hv = hc\overline { v } $$ $$ \therefore hc\overline { v } = h\omega \left( 1 - 2x \right) $$ $$ \therefore \overline { v } = \frac { \omega }{ c } \left( 1 - 2x \right) $$ $$ \therefore \boxed { \overline { v } = \overline { \omega } \left( 1 - 2x \right) } \qquad ...(8) $$ The frequencies of spectral band produced due to transition from \(v = 0\) to \(v = 1\) is called fundamental band or first harmonic band.
Similarly, The energy of vibrational level \(v = 2\) can be calculated using equation (4) as, $$ { E }_{ 2 } = \left( 2 + \frac { 1 }{ 2 } \right) h\omega - { \left( 2 + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ { E }_{ 2 } = \left( \frac { 5 }{ 2 } \right) h\omega - { \left( \frac { 5 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ \boxed { { E }_{ 2 } = \frac { 5 }{ 2 } h\omega - \frac { 25 }{ 4 } h\omega x } \qquad ...(9) $$ For transition \(v = 0\) to \(v = 2\), the frequency of spectral line is given by, $$ \Delta { E }_{ v } = { E }_{ 2 } - { E }_{ 0 }$$ $$ \Delta { E }_{ v } = \left[ \frac { 5 }{ 2 } h\omega - \frac { 25 }{ 4 } h\omega x \right] - \left[ \frac { 1 }{ 2 } h\omega - \frac { 1 }{ 4 } h\omega x \right] $$ $$ \Delta { E }_{ v } = \frac { 5 }{ 2 } h\omega - \frac { 25 }{ 4 } h\omega x - \frac { 1 }{ 2 } h\omega + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 5 }{ 2 } h\omega - \frac { 1 }{ 2 } h\omega - \frac { 25 }{ 4 } h\omega x + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 4 }{ 2 } h\omega - \frac { 24 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = 2h\omega - 6h\omega x $$ $$ \boxed { \Delta { E }_{ v } = 2h\omega \left( 1 - 3x \right) } \qquad ...(10) $$ Since energy difference is quantised. $$ \Delta { E }_{ v } = hv = hc\overline { v } $$ $$ \therefore hc\overline { v } = 2h\omega \left( 1 - 3x \right) $$ $$ \therefore \overline { v } = 2\frac { \omega }{ c } \left( 1 - 3x \right) $$ $$ \therefore \boxed { \overline { v } = 2\overline { \omega } \left( 1 - 3x \right) } \qquad ...(11) $$ The frequencies of spectral band produced due to transition from \(v = 0\) to \(v = 2\) is called first overtone or second harmonic band.
Also, The energy of vibrational level \(v = 3\) can be calculated using equation (4) as, $$ { E }_{ 3 } = \left( 3 + \frac { 1 }{ 2 } \right) h\omega - { \left( 3 + \frac { 1 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ { E }_{ 3 } = \left( \frac { 7 }{ 2 } \right) h\omega - { \left( \frac { 7 }{ 2 } \right) }^{ 2 }h\omega x $$ $$ \boxed { { E }_{ 3 } = \frac { 7 }{ 2 } h\omega - \frac { 49 }{ 4 } h\omega x } \qquad ...(12) $$ For transition \(v = 0\) to \(v = 3\), the frequency of spectral line is given by, $$ \Delta { E }_{ v } = { E }_{ 3 } - { E }_{ 0 }$$ $$ \Delta { E }_{ v } = \left[ \frac { 7 }{ 2 } h\omega - \frac { 49 }{ 4 } h\omega x \right] - \left[ \frac { 1 }{ 2 } h\omega - \frac { 1 }{ 4 } h\omega x \right] $$ $$ \Delta { E }_{ v } = \frac { 7 }{ 2 } h\omega - \frac { 49 }{ 4 } h\omega x - \frac { 1 }{ 2 } h\omega + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 7 }{ 2 } h\omega - \frac { 1 }{ 2 } h\omega - \frac { 49 }{ 4 } h\omega x + \frac { 1 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = \frac { 6 }{ 2 } h\omega - \frac { 48 }{ 4 } h\omega x $$ $$ \Delta { E }_{ v } = 3h\omega - 12h\omega x $$ $$ \boxed { \Delta { E }_{ v } = 3h\omega \left( 1 - 4x \right) } \qquad ...(13) $$ Since energy difference is quantised. $$ \Delta { E }_{ v } = hv = hc\overline { v } $$ $$ \therefore hc\overline { v } = 3h\omega \left( 1 - 4x \right) $$ $$ \therefore \overline { v } = 3\frac { \omega }{ c } \left( 1 - 4x \right) $$ $$ \therefore \boxed { \overline { v } = 3\overline { \omega } \left( 1 - 4x \right) } \qquad \qquad \qquad ...(14)$$ The frequencies of spectral band produced due to transition from \(v = 0\) to \(v = 3\) is called second overtone or third harmonic band.
So if we take the ratio of frequencies we get, $$ { \overline { \omega } }\left( 1 - 2x \right) : 2{ \overline { \omega } }\left( 1 - 3x \right) : 3{ \overline { \omega } }\left( 1 - 4x \right) $$ As anharmonicity constant \(x\) is very small we can say, $$ \left( 1 - 2x \right) \approx \left( 1 - 2x \right) \approx \left( 1 - 2x \right) \approx 1 $$ Therefore, equation becomes, $$ { \overline { \omega } }: 2{ \overline { \omega } }: 3{ \overline { \omega } } = 1: 2: 3 $$ Thus, the frequencies of the origin of fundamental, first and second overtone bands are approximately in the ratio of 1: 2: 3 and in terms of wavelengths they are \(1: \frac { 1 }{ 2 } : \frac { 1 }{ 3 }\) .
4356 Views
3644 Views
4610 Views
3852 Views
3842 Views
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..