7716 Views
5406 Views
5674 Views
5703 Views
6507 Views
5829 Views
The frequency separation between successive line in the rotational spectrum is given by, $$\Delta \overline { \nu } = 2B $$ where B is rotational constant \(= \frac { h }{ 8{ \pi }^{ 2 }Ic } \) $$ \therefore \Delta \overline { \nu } = 2\frac { h }{ 8{ \pi }^{ 2 }Ic } = \frac { h }{ 4{ \pi }^{ 2 }Ic } $$ $$ \therefore I = \frac { h }{ 4{ \pi }^{ 2 }c } \frac { 1 }{ \Delta \overline { \nu } } $$ or I is moment of Inertia \(= \mu { r }^{ 2 }\) $$ \therefore \mu { r }^{ 2 } = \frac { h }{ 4{ \pi }^{ 2 }c } \frac { 1 }{ \Delta \overline { \nu } } $$ $$ or \ { r }^{ 2 } = \frac { h }{ 4{ \pi }^{ 2 }\mu c } \frac { 1 }{ \Delta \overline { \nu } } $$ Thus, If we know the reduced mass or atomic masses of the molecule, we can find the internuclear distance r from the frequency seperation \(\Delta \overline { \nu }\) of rotational spectrum.
Calculate the bond length of carbon monoxide molecule, if its first rotational spectrum line appears at \(3.84 \times { 10 }^{ 2 } { m }^{ -1 }\) (C = 12, O = 16)
We have, $${ \overline { v } }_{ 1 } = 3.84 \times { 10 }^{ 2 }{ m }^{ -1 } $$ Atomic Weight of C = 12
Atomic Weight of O = 16 $$ \therefore Reduced \ mass \mu = \left( \frac { { m }_{ 1 } \times { m }_{ 2 } }{ { m }_{ 1 } + { m }_{ 2 } } \right) $$ $$ = \left( \frac { 12 \times 16 }{ 12 + 16 } \right) = \frac { 192 }{ 28 } = 6.857 a.m.u. $$ $$ = 6.857 \times \left( 1.66 \times { 10 }^{ -27 }Kg \right) $$ $$ = 11.383 \times { 10 }^{ -27 }Kg $$ Thus, \(\boxed { { r }^{ 2 } = \frac { h }{ 4{ \pi }^{ 2 }\mu c } \frac { 1 }{ \Delta \overline { v } } } \)
7084 Views
5025 Views
6411 Views
5402 Views
9384 Views
Apply to join the passionate instructors who share their expertise and knowledge with the world. You'll collaborate with some of the industry's best producers, directors, and editors so that your content is presented in the best possible light..